

# SrTiO3,TiO2(Rutile) Single Crystal

## **Application Examples**

#### **SrTiO3 Single Crystal**

SrTiO<sub>3</sub>(110) directional grown ingot, soon to be commercialized



#### **Benefits for Customers**

(110)High orientation during epitaxial deposition

## Features of SrTiO<sub>3</sub> (110)

(110) water cut diagonally from STO (100) ingot

Cross-Nicol Observation Photograph

Image illustration of distortion





(110) wafer sliced in a circle from STO(110) ingo

Cross-Nicol Observation Photograph Image illustration of distortion





The crossed-Nicol observation shows that we could get the (110)wafers with better uniform properties in the radial direction with the (110)growth.

## **Application Examples**

#### TiO2(Rutile) Single Crystal

Grows TiO2(Rutile) with high uniformity of transmittance at any location inside the ingot.



#### **Benefits for Customers**

 Suitable for optical components for high quality optical communication due to uniformity of transmittance.

### **Features of TiO2**

| Ingot | Length | Tr-①   | Tr-②   | Tr-③   |
|-------|--------|--------|--------|--------|
| T21-1 | 44 mm  | 64.5 % | 64.5%  | 64.2 % |
| T21-2 | 41 mm  | 66.5 % | 66.4 % | 66.1 % |
| T21-3 | 41 mm  | 67.4 % | 67.2 % | 67.0 % |

We have studied the <u>radial direction</u> <u>uniformity</u> of optical properties using the 3 different ingots by measuring the ingot transmission @ 1068 nm of the 3 different positions shown below. We selected the 3 ingots with the different transmission, such as 64.n%, 66.n% and 67.n%